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N A T U R A L  C O N V E C T I O N  O F  A N  E L E C T R I C A L L Y  

C O N D U C T I N G  F L U I D  I N  A S P H E R I C A L  L A Y E R .  

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  

S. V. Solov'ev and S. V. Kuznetsov UDC 536.25 

Natural-convection heat transfer of an electrically conducting fluid in a spherical layer modeling the earth's 

liquid core is considered. The effect of different physical factors on fluid flow in a spherical interlayer is 

analyzed. 

The geomagnetic field of the earth and its variations reflect a complex picture of geomagnetic flows and 

fluctuations in the earth's core - the place where sources of the geomagnetic field proper are situated. It appears 

that practically the entire magnetism of the earth has sources inside the earth [1 ]. It should be noted that the 

actual magnetic field of the earth is created in magnetohydrodynamic flows in the earth's core. Modern theories 

of geomagnetism proceed from the assumption that the earth's magnetic field is created and maintained by a 

dynamomechanism, i.e., in the same manner as in a dynamo with self-excitation. The earth's liquid core does not 

resemble an actual dynamo. However, if thermal or gravitational convection arises in the conducting fluid core, 

then hydrodynamic flows appear, which in the analogy considered corresponds to the motion of a conductor. If 

some bare magnetic fields exist in the core, then an electric current arises in the conducting flow upon crossing 

force lines of these fields. The electric current creates a magnetic field that, with a favorable geometry of the flows, 

can enhance the outer bare field, thus strengthening the current, and so on. The process will progress until a 

stationary magnetic field arises and various dynamic processes counterbalance each other. The theory of the 

geomagnetic field based on the above-stated principle is called the theory of the hydromagnetic dynamo (HD). 

Due to the complex nature of the HD problem, where equations for a magnetic field should be solved 

simultaneously with equations of hydrodynamics, the theory of the HD is now developed on the basis of the study 

of kinematic models of the earth's dynamo, i.e., theoretical models are considered in which the velocity of fluid 

motion is regarded as assigned and only the magnetic field is determined. Actually, the equations describing 

electromagnetic effects should be supplemented by equations of fluid motion with account for magnetic, Archimedes, 

and Coriolis forces that allow for rotation of the earth. 

The present paper deals with natural-convection heat transfer of an incompressible fluid in a spherical 

interlayer in the Boussinesq approximation. The fluid moves in a magnetic field under the effect of natural 

convection. As a result an electric current arises in the fluid, which, in turn, generates a magnetic field capable of 

either strengthening or decreasing the initial magnetic field. Free-fall acceleration is directed toward the center of 

the sphere. 

The mathematical formulation of the problem in dimensionless form (with account for the symmetry with 

respect to longitude, by virtue of which the Coriolis force is disregarded) is described by the following system of 

differential equations: 
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Fig. 1. Computational region. 
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div V = 0 ,  (3) 

1 0 B  1 
- rot (V x B) + ~ AB,  (4) 

Sh Or 

div B = O. (5) 

In deriving Eqs. (2), (4) we took into account the fact that in magnetohydrodynamics a solid medium is a 

liquid in which polarization and magnetization are absent. The equations are written in an irrotational system of 

coordinates. 
The geometry of the computational region is given in Fig. 1. 

In writing the system (1)-(5) we used the following notation: y is a unit vector directed toward the center; 

0 = (T - 7"2)/(Tl - 7"2), V = V /u2 ,  B = B / B  o are the dimensionless temperature, velocity, and  magnetic induction; 

= t / t o  is the dimensionless time; Eu = Po/pou~  is the Euler number; Re = u o r l / v  is the Reynolds number;  Pe = 

u o r l / a  is the Peclet number;  Sh = Uoto/rl is the Strouhal number;  Gr  = gfl(Tl  - T 2 ) r ~ / v  7 is the Grashof  number;  
2 Rein --- uorl /Dm is the magnetic Reynolds number; S = oBor I/pOUO is a parameter of magnetic interaction charac- 

terizing the ratio of the bulk electric force to the inertia forces; r = r ' / r l  is the dimensionless radius; r' is the 

dimensional radius. The remaining notation is conventional. 

We note that  the system (1)-(5) is written in dimensionless form for the case of boundary  conditions of 

the first kind. 

In the present paper, as applied to the magnetohydrodynamics  of the core, we considered boundary  

conditions of the 1st, 2nd, and 3rd kind. 

B o u n d a r y  condi t ions  o f  the 1st kind.  On the inner (F1) and outer (/'2) boundaries of the ear th ' s  liquid core 

the values of the unknown functions are assigned at any instant of time: 

Vr l r l  = Vol t1  = Vr l / ` 2=  $:01 / '2=0;  

0[/-1 = 1 ; 0 [ / - 2 = 0 ;  P [ r l  = P I  = c ° n s t ;  P l l ' 2 = P 2 = c o n s t ;  

B r [ F1 = const ; B r I/'2 = const ; B 01 r 1 = const ; B 01 r 2 = const .  

B o u n d a r y  condi t ions  o / t h e  2nd  kind. On the inner and outer boundaries of the core zero values of the 

velocity are prescribed: 

V, lrl = Volrl = V~lr 2 = Volr2 = o. 

On the inner  boundary of the core the heat flux is assigned by the Fourier law: 
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0 • 1  = 1 ; 0 J r  2 =  0 ,  
F 1 

The boundary conditions for the magnetic induction and the pressure are similar to the ones written above. 

For the case of boundary  conditions of the 2nd kind, differences in the form of presentat ion of the 

dimensionless quantities given above occur only for the temperature and the Grashof number: 

t9 = ( T -  T 2 ) 2 / ( q r l ) ,  
g flqr~ 

G r - - -  

B o u n d a r y  cond i t ions  o f  the 3rd k ind.  For the velocity, pressure, and magnetic induction they may  be the 

same as above. On the boundaries of the core, heat transfer occurs by the Ne wt o n - R i c h ma n  law: 

O0 " - ~nn = Bi2 (Olrz - t~liq 2)" Bil (~91iql - t91F 1) = _ ~-~ r 1 ' r2 

Here Bi 1, Bi2 are known Biot numbers: Bik = o t k r l / , ~ ,  k = 1, 2; 191iql , l~liq2 are known dimensionless temperatures of 

the liquid that washes the core boundary Fl (from inside) a n d / ' 2  (from outside), respectively; a l ,  a2 are the local 

coefficients of heat transfer from the liquid washing the boundaries/ '1  and/`2 ,  respectively. 

It should be noted that a combination of boundary conditions for the temperature is possible. 

The  problem (1)-(5) was solved in the variables t empera tu re -vor t i c i ty - s t r eam function. For this the 

operation rot was applied to the both sides of Eq. (2): 

OV S Sh rot -~- + rot (VV) V = - Eu rot VP + ~ rot (rot B x B) + 1 rot AV + G__£_r rot y O. 
Re Re 2 

(6) 

We introduce new variables, namely,  the vorticity W -- rot V and the stream function 

1 du2 v _ - i - - - - - - - ,  Vo= 
r s in  0 00 

1 O~  

r s in  0 Or 

In the new variables the system of equations (1)-(5) takes the following form: 

_ _  - -  , 

Sh Or r 2 s i n 0  Or Or Pe r Or r 002 r 
(7) 

1 Ow O~ Ow w OtP + w cotan 0 = 1 0 w + _ T _ _ _ _ _  - _ _  

Sh Or r s i n0  Or Or O0 r O0 Or 

= __1 / -J-z  [ 2 0oJ 1 __02e° cotan 00oo w O] 
020) + + r 2 + ~ 2 2 -- 

Re LOt r Or 002 r O0 r sin 

Gr 1 O0 S [ O2Bo B r OB 0 OB r OB 0 B 0 0 B  r 
+ ~ 1Br . . . .  

Re 2 r 0/9 Re m [ Or ~---4-- + 2 + + r Or Or Or r Or 

B r O2Br 1 OB r OB r B 0 O2Bo 1 OB 0 OB 0 2B 0 OB 0 
- - - - +  - - +  - - +  

2 
r OrO0 r Or O0 r OrO0 r Or 00 r O0 
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B 0 02Br 

2 r 002 

1 OB r OBo] 
? oo 

(8) 

O2W 1 O2W cotan 0 oq j - - +  
2 2 Or 2 r 002 r O0 

- - - -  - oa r s in O , 

where w is the component  of the vector of vorticity along the longitude T, 

+ - -  

[: :r] _ _  1 OB 0 OW O2ttt OB r 1 __OB r _ _ l  02~ + + B r - -  
Sh 0z r 2 sin 0 002 r O0 O0 OrO0 O0 

2 OB r 1 02Br cotan 0 0 B  r 2B r 2B 0 cotan 0 
1 O 2 B r + - - '  + 2 002 + 2 2 2 

Re m r Or r r O0 r r 

+ 

2 OBo1 

y ;o j, 

(9) 

(lO) 

1 OB 0 1 [ 02q j OB r OW B 0 0 2 ~  B 0 0 q  j 

. . . . .  [ Br - -  + r2 
S h  Or r s i n O  Or 2 Or Or r OrO0 O0 

1 ' r . . . .  co,a oo o 
r 00 Re m r Or r r O0 r s in20  r 2 " 

(11) 

For the energy  equation we considered boundary  conditions of the 1st, 2nd, and  3rd kind. H e r e  the 

derivative of t empera tu re  vanished on the s ym m e t ry  axis: 

----[O=O,n = O .  

For the equations of magnetic induction we envisaged boundary  conditions of the 1st kind. 

Nonslip conditions on the inner and outer  boundaries  and  s y m m e t r y  conditions on the axis were  taken for 

the velocity. Hence  we obtain boundary  conditions for the s t ream function and the vorticity. 

For the s t r eam function, 

/ I / I F  1 , 2 -  - -  - -  
OtP 

Or F 1 , 2  

= 0 ,  
]o=o,x 00 o=o,~ 0 .  

The  bounda ry  conditions for the vorticity on the walls presuppose  l inear variat ion of to along the  normal.  

The  boundary  condition for to on the s ym m et ry  axis is taken f rom [2 ]. 

The  local Nussel t  numbers  on the surfaces of the inner  and outer  spheres are  calculated by  the formulas  

N u  1 = - _  
r = l  = - -  2 Or  r = R 2  

Then  the Nussel t  numbers  were averaged over the surfaces r = 1 and r = R2: 

~ l r l  1 ~ [~ r ]  
= = - of sin OdO, N-'uq T ~ r=l 
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~2r2 R2 "~ -~r sin OdO. 
-N-Hut 2 - -  )t - -  2 0 r = R  2 

A check using the balance equation 

~1 (T1 -- T2) 4Jrr~ = ~2 (TI - T2) 4Jrr2 o r  NUrl = R2Nur2 

made it possible to judge the validity of the obtained values of Nut! and Nur 2. 

N O T A T I O N  

T, dimensional instantaneous value of the temperature; T I , T 2, dimensional temperatures of the inner and 

outer surfaces of the spherical interlayer; t, dimensional instantaneous time; uo, BO, P0, PO, to, scales of velocity, 
magnetic induction, pressure, density, and time; rl, 1"2, dimensional radii of the inner and outer spheres; R 2 = 
r2/rl ,  dimensionless radius of the outer sphere; v, kinematic viscosity; a, thermal diffusivity; /3, coefficient of 

thermal expansion; Drn, coefficient of magnetic viscosity (diffusion); or, conductivity of the sphere; 2, thermal 

conductivity; q, heat flux density on the inner surface of the sphere; qJ, dimensionless stream function; w, vorticity; 
0, polar angle; B r, BO, radial and meridional components of the magnetic induction; a l ,  a 2, averaged coefficients 

of heat transfer on the inner and outer surfaces of the spheres; FI = 1, I'2 = r2/rl ,  boundaries of the inner and 

outer spheres. 
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